42 research outputs found

    Magician simulator — A realistic simulator for heterogeneous teams of autonomous robots

    Get PDF
    We report on the development of a new simulation environment for use in Multi-Robot Learning, Swarm Robotics, Robot Teaming, Human Factors and Operator Training. The simulator provides a realistic environment for examining methods for localization and navigation, sensor analysis, object identification and tracking, as well as strategy development, interface refinement and operator training (based on various degrees of heterogeneity, robot teaming, and connectivity). The simulation additionally incorporates real-time human-robot interaction and allows hybrid operation with a mix of simulated and real robots and sensor inputs

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Gender and Family Systems

    Get PDF
    Author version made available in accordance with publisher copyright policy. The final publication is available at link.springer.com.EEG recording is a time consuming operation during which the subject is expected to stay still for a long time performing tasks. It is reasonable to expect some uctuation in the level of focus toward the performed task during the task period. This study is focused on investi- gating various approaches for emphasizing regions of interest during the task period. Dividing the task period into three segments of beginning, middle and end, is expectable to improve the overall classi cation per- formance by changing the concentration of the training samples toward regions in which subject had better concentration toward the performed tasks. This issue is investigated through the use of techniques such as i) replication, ii) biasing, and iii) overlapping. A dataset with 4 motor imagery tasks (BCI Competition III dataset IIIa) is used. The results il- lustrate the existing variations within the potential of di erent segments of the task period and the feasibility of techniques that focus the training samples toward such regions

    A comprehensive review of swarm optimization algorithms

    Get PDF
    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained, and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches

    Predicting the valence of a scene from observers’ eye movements

    Get PDF
    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images

    Navigating Agents In Uncertain Environments Using Particle Swarm Optimisation

    No full text
    This study introduces enhanced versions of Particle Swarm Optimization (PSO) to handle the real-world navigation problems. These modified versions of PSO are known as Particle Swarm Optimization with Area Extension (AEPSO) and Cooperative AEPSO (CAEPSO)
    corecore